An exogenous hydrogen sulphide donor, NaHS, inhibits the apoptosis signaling pathway to exert cardio-protective effects in a rat hemorrhagic shock model.
نویسندگان
چکیده
Hydrogen sulfide (H2S) has been reported to be interwined in multiple systems, specifically in the cardiovascular system. However, the mechanisms underlying remain controversial. In the present study, we assessed the cardio-protective effects of H2S in the rat hemorrhagic shock model. Hemorrhagic shock was induced in adult male Sprague-Dawley rats by drawing blood from the femoral artery to maintain the mean arterial pressure at 35-40 mmHg for 1.5 h. The rats were assigned to four groups and the H2S donor, NaHS (28 μmol/kg, i.p.), was injected before the resuscitation in certain groups. After resuscitation the animals were observed and then killed to harvest the hearts. The morphological investigation and ultrastructural analyses were done and apoptotic cells were detected. The levels of relevant proteins were examined using Western blotting and immunohistochemical analyses. Resuscitated hemorrhagic shock induced heart injury and significantly increased the levels of serum myocardial enzymes, creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Furthermore, it caused marked increase of apoptotic cells in heart tissue. Moreover, the expression of death receptor Fas and Fas-ligand, as well as the expression of apoptosis-relevant proteins active-caspase 3 and active-caspase 8 were markedly increased. Administration of NaHS significantly ameliorated hemorrhagic shock caused hemodynamic deterioration, decreased myocardial enzymes elevation, protected myocardial ultrastructure, and inhibited the expression of apoptosis-relevant proteins. It suggested that H2S might exert its cardio-protective roles via both the extrinsic Fas/FasL/caspase-8/caspase-3 pathway and the intrinsic mitochondria-involved pathways.
منابع مشابه
Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury
INTRODUCTION Haemorrhagic shock is associated with an inflammatory response consecutive to ischaemia-reperfusion (I/R) that leads to cardiovascular failure and organ injury. The role of and the timing of administration of hydrogen sulphide (H2S) remain uncertain. Vascular effects of H2S are mainly mediated through K+ATP-channel activation. Herein, we compared the effects of D,L-propargylglycine...
متن کاملHydrogen sulphide and mild hypothermia activate the CREB signaling pathway and prevent ischemia-reperfusion injury
BACKGROUND Both hydrogen sulphide (H2S) and mild hypothermia have been reported to prevent brain damage caused by reperfusion assault through regulating the N-methyl-D-aspartate receptor (NMDAR). However, the relationship between the two treatments and how they exert neuro-protective effects through NMDARs remain to be elucidated. METHODS Transient cerebral ischemia was induced using the Puls...
متن کاملHydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway
The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملH2S Donor NaHS Changes the Production of Endogenous H2S and NO in D-Galactose-Induced Accelerated Ageing
Aims. The study was designed to explore whether hydrogen sulphide (H2S) and nitric oxide (NO) generation changed in D-galactose- (D-gal-) induced ageing, the possible effects of exogenous H2S supplementation, and related mechanisms. Results. In D-gal-induced senescent mice, both H2S and NO levels in the heart, liver, and kidney tissues were decreased significantly. A similar trend was observed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental pathology
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2015